
ExpLab

A Tool Set for Computational Experiments∗

http://explab.sourceforge.net/

Susan Hert Lutz Kettner Tobias Polzin Guido Schäfer

Max-Planck-Institut für Informatik
Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany

[hert|kettner|polzin|schaefer]@mpi-sb.mpg.de

May 30, 2003

Contents

Contents 1

1 Introduction 3
1.1 Goals . 3
1.2 Supported Platforms . 3
1.3 Supported Experiments . 3

2 Setting up an Experiment 4
2.1 Recording the Experiment’s Context . 4
2.2 Specifying the Executable and Its Parameter Sets 5

2.2.1 The labmex Tool . 6
2.2.2 Multiple Data Sets, Compilations, or Machines 6
2.2.3 The labschedule Tool . 7

3 Running an Experiment 9

4 Rerunning an Experiment 10

5 Analyzing the Output 11
5.1 The Sus Filter Tools . 11
5.2 Examples . 13

5.2.1 table2sus . 14
5.2.2 text2sus . 15
5.2.3 merging files and adding fields . 16
5.2.4 filtering . 16
5.2.5 command option file . 17
5.2.6 sorting and combining values in different ways 17
5.2.7 adding fields with formatting . 18

∗Partially supported by the Future and Emerging Technologies programme of the EU under contract number
IST-1999-14186 (ALCOM-FT).

1

http://explab.sourceforge.net/

2 Sec. 0: CONTENTS

5.2.8 sus2plot . 19
5.2.9 sus2latex . 19

6 File Formats 20
6.1 labrc Files . 20
6.2 Command Input Files . 21
6.3 .log Files . 23

6.3.1 labrun . 23
6.3.2 labschedule . 24

6.4 sus Files . 25

7 The Current Tools 27
7.1 Command-line Options . 27
7.2 labsetup . 28
7.3 labrun . 29
7.4 labrerun . 32
7.5 labmex . 34
7.6 labschedule . 36
7.7 text2sus . 40
7.8 table2sus . 43
7.9 sus2text . 44
7.10 sus2latex . 45
7.11 sus2plot . 46
7.12 sus2sus . 48

8 Downloading and Contact Information 49

A System Environment Commands 49

Bibliography 51

Index 52

Sec. 1: Introduction 3

1 Introduction

This document describes a set of tools that support the running, documentation, and
evaluation of computational experiments. We take our cues from the natural sciences
where experiments are performed in a lab that is equipped with tools designed specifically for
the purpose of supporting experimentation and where experiments are fully documented in a
lab book. This is done so the results can be analyzed in the proper context and others can
reproduce the same experiments to verify the results or perhaps test hypotheses about which
parts of the experimental context are responsible for the observed results. The informational
needs of scientists evaluating computational experiments are exactly the same as those for
evaluating other types of experiments: the context must be known and, to lend credibility to
the results, one must be able to reproduce the same experiment in one’s own lab from the data
presented. Such reproducibility is recognized, not only by scientists, as an important part of
scientific practice [Joh96, MPG00], as is the ability to describe precisely the experimental
environment when presenting results [MM99].

1.1 Goals

There are three main goals that motivate the development of this tool set:

• to provide a simple way to set up and run computational experiments;

• to provide a means of automatically documenting the environment in which an exper-
iment is run so the experiment can be easily rerun (provided the same environment is
still available) and the results can be more accurately compared to the results of other
computational experiments;

• to eliminate some of the tedium involved in collecting and analyzing output by providing
basic text output processing tools.

It must be noted that our goal here is not to replace existing tools that already provide useful
functionality for computational experiments (e.g., gnuplot, make, perl, python). Rather,
the goal is to augment this set with new tools that build on the functionality already available
to provide a comfortable experimentation environment.

1.2 Supported Platforms

We believe the tool set works on most Solaris, IRIX, and Linux platforms on which Python
version 1.6 or greater is installed. We have tested it on

• Solaris 5.8 and 5.9,

• IRIX 6.5, and

• Linux 2.2.19 (Debian).

We may unknowingly support other platforms as well. If you use the tools successfully on
some other platform, please let us know so we can extend this list.

1.3 Supported Experiments

Because we do not want to restrict the user by limiting the set of commands that can be used
in running an experiment, our notion of an experiment is very general; it is, in fact, simply
an executable. This means that a user may supply, for example, a compiled binary file or an

4 Sec. 2: Setting up an Experiment

executable shell script as the experiment. This notion of an experiment supports not only
different computational contexts but also different programming styles.

An experiment generally consists of three separate stages: setup (Section 2), execution
(Sections 3 and 4), and analysis of results (Section 5). Our tool set is designed with these
three stages in mind but allows users to bypass any one of the stages so the tools could be
used, for example, to help in analyzing existing output files. Each of the tools in our set
has a command-line interface following the style of other common Unix tools (Section 7.1).
Recognizing that it can be tedious and error-prone to provide a large (or even a small) set of
command-line arguments that activate the features one wants to use, all the tools also allow
input of some or all arguments from a text file (Section 6.2).

2 Setting up an Experiment

There are (at least) three things involved in setting up a computational experiment. The first,
very important one, is establishing a revision control repository for the source files that are
used to construct the executable (i.e., the source code and the makefile(s)). This is necessary
to assure that experiments are reproducible. Our tools are designed assuming CVS is used
for this version control. It is possible to use the tools without source code revision control,
but this is, of course, not what we recommend. The accompanying tutorial for our tools gives
a brief introduction to the use of CVS for those not familiar with it.

The other two things to be set up are the instruments that record the relevant environ-
mental context and the executable and its input that will serve as the experiment. Our tool
set provides assistance for both of these setup tasks.

2.1 Recording the Experiment’s Context

For recording environmental context, the tool labsetup is provided. It generates a resource file
that contains information provided by the user in response to queries about certain commonly
relevant environmental data. By default, this configuration file is called .labrc and is stored
in the user’s home directory. If such a file already exists, it will be modified according to the
input provided and the old version of .labrc will be copied to .labrc.bak. Alternately, the
user can indicate that a resource file, labrc should be created (or modified) in the current
directory.

The tools use the information stored in such configuration files, if present, to augment the
data provided via the command line. For options that may have a single value only, data in
the local labrc file has precedence over data in the global file ($HOME)/.labrc, and options
given at the command line have precedence over options provided in a configuration file. For
options, such as --cvs for labrun, that may appear more than once on a command line, the
union of the option values from the command line and the resource files, if any, is used by the
tool.

Here is an excerpt from a sample run of labsetup showing how you can specify that the
C compiler and its version should always be logged as well as the name of the graphics card
being used.

labsetup session

labsetup, Revision 1.13, 2002/07/09

For all questions asked, the current value represented by existing
~/.labrc is displayed in square brackets after the question.

Sec. 2: Setting up an Experiment 5

If no value is set in ~/.labrc, the default value is shown
in brackets. To keep the value shown, simply hit return.

To reset a flag not corresponding to a yes-no question to the default
use ’use default’ as the input value.
--

[...]

Change settings for labrun? [y]
y

[...]

Environment variables whose values should be noted
Enter new values one per line.

Use a ’+’ at the beginning of the first line to add to the current
list; otherwise any new values given will replace the current ones.

An empty line ends the input.
[None]
CC

Additional comments to be recorded in log file
Enter new values one per line.

Use a ’+’ at the beginning of the first line to add to the current
list; otherwise any new values given will replace the current ones.

An empty line ends the input.
[None]
Compiler version=‘$CC -v‘:version
Graphics card=‘hinv‘:Graphics\sboard

[...]

2.2 Specifying the Executable and Its Parameter Sets

Though our tool set is general enough to support a myriad of experiments, we imagine the
most common experiments will be one of the following three kinds:

• compiling programs with different compilation flags and running them on the same
input;

• running programs on different input sets;

• running one of the above two types of experiments on different machines.

We provide specific means to make these types of experiments easier.

6 Sec. 2: Setting up an Experiment

2.2.1 The labmex Tool

The tool labmex (for “Make and EXecute”) supports the first kind of experiment. As its
name implies, this tool can be used to compile and execute a given program. By default, the
command make is used, together with any user-supplied options for make, to build a certain
target (or targets). If compilation succeeds, then the specified executable is run with any
given command-line arguments. If compilation fails, a compilation log is generated with the
name <executable>-<date>-<time>.clog. By default, this file will reside in the current
directory, or, if called by labrun it will reside in the directory in which labrun’s log files are
stored.

For example, the command

labmex fun 123

would translate into the commands

make fun
fun 123

If the make fun command fails, a file with a name like fun-2002-05-09-205405.clog would
be created containing the output from the make command, and fun 123 will obviously not
be executed. In addition, a link to the compile log file with the name current.clog will be
created in directory containing the log file, thus making it easier to access the latest compile
log.

Other command-line options for this tool allow one to specify a different directory for the
compilation log file, target or targets other than the executable for the compilation command,
a command other than make for building the targets and that a make clean should be done
before, after, or before and after the target is built.

The labmex tool can be used outside the context of computational experimentation as a
general shortcut tool for compiling and executing any program.

2.2.2 Multiple Data Sets, Compilations, or Machines

Though conducting an experiment using multiple data sets or multiple sets of compilation
flags can be easily accomplished by issuing multiple separate experiment commands, it is a
bit tedious to do things this way. One can easily forget which data sets have been tested and
which have not. We have therefore provided ways around (some of) the tedium and (some of)
the forgetfulness. For the tools labrun (Section 3) and labrerun (Section 4), the keyword
NEX (for “new experiment”, or simply “next” if you prefer) can be used in the command line
to indicate that what follows is the input for a new experiment. Thus multiple experiments
can be specified at once. See Section 6.2 and the examples accompanying the description of
labrun in Section 7.3 for examples.

Any number of NEX’s are possible. This feature is most useful when command-line argu-
ments are provided via a file instead of on the command line itself (Section 6.2).

For running experiments on different machines, our tools can be used quite easily in
conjunction with the ssh command. For example, one could compile and execute a program
on a specific machine turing using the command

ssh turing labmex fun 123

See the documentation for ssh for more details on remote execution of commands. Using
ssh in conjunction with the NEX keyword allows one to run an experiment on several different
machines quite easily. See the examples accompanying the description of labrun in Section 7.3
for an example.

Sec. 2: Setting up an Experiment 7

2.2.3 The labschedule Tool

For more elaborate scheduling of multiple experiments, the tool labschedule is provided.
This tool provides an easy means to

• loop through sets of input values,

• start several experiments simultaneously on one machine,

• distribute a set of experiments among a cluster of machines.

This tool’s extreme flexibility comes through the use of loops and variables. Variable names
begin with a % and loops are designated using the --for option.

Each loop has an associated variable that is simply the number of the loop in the command
line preceded by a %. For example, to run several experiments that differ only in the arguments
given to the program, a single for loop will suffice.

labschedule --for=’10 20 30’ bench %1

This command will cause the three experiments

bench 10
bench 20
bench 30

to be started in succession on the local machine. More precisely, the following three labrun
commands will be issued:

labrun --name=schedule-10 bench 10
labrun --name=schedule-20 bench 20
labrun --name=schedule-30 bench 30

The --print option of labschedule will show you the commands that are to be executed
with all variable names replaced with the corresponding values. Any number of --for options
are possible, and the result will be a nested loop structure, with the first --for command
corresponding to the outermost loop. For example,

labschedule --for=’10 20 30’ --for=’a b’ bench %1 %2

will, in essence, cause the following to be executed:

for %1 in [10, 20, 30] do
for %2 in [a, b] do

labrun --name=schedule-%1-%2 bench %1 %2

and thus six experiments will be started in succession.
There is a rich syntax available for specifying the ranges of the for loop variables. One can

use python expressions (e.g., range(5) specifies the range 0 1 2 3 4), the results of commands
(e.g., ‘find . -name *.in -print‘), the contents of files (e.g., @input), and the values
of environment variables (e.g., $DATA DIR/*.dat). The last example also shows that words
containing a ’*’ or ’?’ will be replaced by files matching the pattern. Sytnax is also available
for selecting regular expressions from any of these values.

In addition to the loop variables, several variables (e.g., %currdir, %host, %name) are pre-
defined and will be expanded to their appropriate values upon execution of the loop command.
The flag --macro allows the you to define other variables appropriate to your expeirments.

8 Sec. 3: Setting up an Experiment

When scheduling many experiments at once, one may want to avoid the creation of many
individual labrun calls, each of which will create its own .log file (See Section 3). You can
therefore limit the amount of nesting of the loops with the --nesting flag. If the value set
with this flag is smaller than the number of loops specified, the executable given to labrun
will itself be a call to labschedule containing the remaining loops . This labschedule call
will not issue calls to labrun but will execute the commands give to it directly (achieved
through the use of the --direct flag). For example,

labschedule --for=’x y’ --for=’A B’ --nesting=1 bench %1 %2

will result in the following two calls to labrun

labrun --name=schedule-x labschedule -d --nesting=1 --for=’A B’ bench x %2
labrun --name=schedule-y labschedule -d --nesting=1 --for=’A B’ bench y %2

If the various experiments being scheduled could be run on any one of a cluster of machines,
you can specify the names of the machines with the flag --hosts and labschedule will
schedule the tasks on these machines as they become idle. For example, the effect of

labschedule --for=’10 20 30’ --hosts=’localhost turing’ bench %1

is that the following two commands would be issued immediately:

labrun --name=schedule-10 ssh localhost cd %curdir; bench 10
labrun --name=schedule-20 ssh turing cd %curdir; bench 20

Then, when one of these two runs finshes, the third call to labrun for bench 30 would be
issued using ssh to the idle machine.

If it is possible to have more than one instance of your experiment running at a time,
the flag --maxtasks can be used to increase the maximum number of simultaneous experi-
ments per machine. By default, each machine is assigned the number of tasks specified by
--maxtasks (which is, by default, 1), but it may be desirable to check other conditions (such
as the load of the machine) to determine if a host can accept a new task. For this, the flag
--check, with which you can specify a condition to be checked, is available as well as the
variable %idle that determines a host’s idle percentage and %check that determines if a host’s
idle percentage is above 5.

In the course of running multiple experiments, it may happen that some of them fail
for one reason or another. By default, labschedule will abort after such a failure. This
behavior can be changed (with --ignore) such that the remaining experiments will continue
to be scheduled. To rerun any failed experiments, it suffices to call labschedule once again
in the same way it was originally called. The experiments that did not successfully finish
will be rerun, but experiments for which a log file exists in which a successful completion is
recorded are not rerun. Alternatively, one can indicate that all experiments should be rerun
(--noskip), and/or that the log files of failed experiments will be preserved (--keep).

Further options for this tool allow one to specify the location of the log files (by default, this
is ./lab log); the prefix of the name to be passed to labrun (by default, this is schedule);
a command other than ssh %host cd %curdir; to insert before the labrun call; further
options to be passed to labrun; that the command should be run without using labrun or
run in the background.

In addition to the log and output files produced by labrun, labschedule keeps track
of its own actions in three files: a .log file that logs all relevant actions, a .out file that
holds the output of all successful runs, and a .err file that holds the output of all failed
runs. Note that this is in contrast to the meaning of .out and .err used for labrun. The
files will be located in the same log directory as the files of labrun, and the names will be
as follows: <exp_name>-<date and time>.<ext>, where <exp_name> is schedule by default
and otherwise the name given as an arugment with the --name flag.

Sec. 3: Running an Experiment 9

3 Running an Experiment

Once the lab environment has been set up, one needs to run the experiment and record the
data necessary to be able to reproduce the experiment later. The tool labrun accomplishes
this. There are three main tasks performed by labrun

• it assures that the source code has been “fixed”;

• it records the context of the experiment;

• it runs the experiment.

In its simplest form, labrun is executed in a directory containing the source code for the
experiment’s executable. For example:

labrun steiner -v closed 41 30

will cause the following two things to happen:

• a command cvs status is issued in the current directory to assure that the source
code in the current directory (which presumably is the source code used to produce the
program steiner) is up to date.

• if the source is up to date, the program steiner will be executed using the arguments
-v closed 41 30.

The labrun tool will generally create at least two files: one that contains the output of the
experiment (the .out file) and another that records the information about the environment in
which the output was created (the .log file; see Section 6.3). Additionally, a file with extension
.err may be generated if the experiment program writes output to the error stream. The
.out and .err files are generated only if the program writes output to the standard output
and standard error streams, respectively. The .log file is always generated. The names of
the generated files all have the same format: <exp_name>-<date and time>.<ext>, where
<date and time> has the format YYYY-MM-DD-HHMMSS and <exp_name> is, by default, the
name of the executable used by logrun. By default, these files are created in a subdirectory
lab log in the current directory. For the example above, the name of the log file would be
something like ./lab log/steiner-2002-05-21-093412.log. This file is also accessible as
./lab log/current.log, which is a link to the most recent log file. Such a “current” link
is created for each of the three possible files generated by labrun, thus making it easier to
examine the results of the last experiment or to observe the progress of the current experiment
as it is running.

Some of the options available for labrun allow one to specify

• the location of the CVS directories corresponding to this experiment,

• a different location for the .log, .out, and .err files,

• a name other than the executable to use for the experiment in the created output files,

• a tag other than the <date and time> to use in the files created.

For example, altering the above command as follows:

labrun --cvs .:/home/hert/src --log ../lab --name example
--tag closed_41_30 steiner -v closed 41 30

10 Sec. 4: Rerunning an Experiment

will check if the code in the current directory as well as the directory /home/hert/src is up
to date and, if so, will execute the program steiner in the current directory. It will place the
created log and output files in a subdirectory lab in the current directory’s parent directory,
creating this subdirectory if it does not already exist. The files created will use example for
<exp_name> and closed 41 30 instead of <date and time> in the name. Thus the name of
the log file for this experiment would be ../lab/example-closed_41_30.log.

Other options for labrun allow one to indicate: that no CVS directories should be checked;
that the program should be executed in a different directory; that a specific version of the
source code should be used instead of the current one (particularly useful in conjunction with
labmex); additional things to be recorded in the .log file; that all output from the experiment
should be recorded in a single file (the .log file) instead of spread over possibly three files
(the .log, .out, and .err files); and that the experiment should be run in the background
and should notify the user upon completion.

Options may also be specified via a local or global resource file (Section 2.1). Such resource
files are searched for when processing the input for labrun and, if present, the information
recorded there will be used to augment the input provided at the command line. In cases of
conflict, command-line arguments take precedence over data provided in the local labrc file,
which takes precedence over data provided in the global .labrc file.

4 Rerunning an Experiment

Because one of our goals is to enable experiments to be rerun from the data recorded, we
provide a tool, labrerun, that does precisely that. In particular, given a log file created by
our experimentation tool (or by some other means following the same syntax; see Section 6.3),
this tool will run the experiment described in this log file using a context as close to the one
described in the original log file as possible. For example, one may rerun an experiment with
a command as simple as:

labrerun ../lab/example-closed_41_30.log

A string of command-line arguments for labrun are constructed from the information recorded
in the given log file together with the arguments given to labrerun. If environment variables
were recorded in the input log file, the same values for these variables will be used in the
call to labrun. If this is not desirable (e.g., because a certain path has changed or software
available previously has been upgraded), it is possible, through the --ignore option, to tell
labrerun to ignore the value of an environment variable recorded in the log file and simply
record the current value of this variable for the rerun of the experiment. Global and local
resource files, if they exist, are ignored by labrun when it is called from labrerun since all
information relevant to an experiment is recorded in its log file and need not be supplemented
by data in a resource file.

Once the list of command-line arguments has been constructed and all environment vari-
ables are set, the tool will attempt to change to the directory that was current when the log
file was created and execute the labrun command from there. If that directory no longer
exists, the tool will issue a warning and try to proceed in the current directory.

The CVS date tag recorded in the given log file is used to tell labrun to check out the
version of the code that was current when the original experiment was run. This affects the
running of the experiment, of course, only if the experiment involves recompiling the program
from its sources. After the rerun of the experiment is finished, the current version of all
relevant files under CVS will be restored. If you wish to keep the old files after the rerun, the
--keep option for labrerun can be used. There is also a --nocvs option for labrerun, which

Sec. 5: Analyzing the Output 11

allows you to rerun an experiment with the same settings as an old experiment but using the
current version of the source code (e.g., to see the effect of certain code changes).

The name of the log file from which the environmental information was taken is noted
in the new log file created for the new run. Environmental differences, if any, can then be
discovered using, for example, diff with the current log file and the old log file.

The default location of the files created from the experiment is the location of the log file
given on the command line, and the files are named in the same way as for labrun. A subset
of the options available for labrun are also available for labrerun. They allow one to specify
a directory other than the default in which to store the output files, a different directory in
which to run the program, a different name to use for the experiment when creating the log
file, additional environmental information to be recorded in the new experiment’s log file,
that all output should be stored in the log file, and that the experiment should be run in the
background and notify the user upon completion. There is also an option that allows one
simply to print the labrun command generated from a log file without executing it and an
option to edit the command constructed from the log file before execution.

5 Analyzing the Output

5.1 The Sus Filter Tools

Output generated by experimentation programs can come in a myriad of forms. However,
the output desired for analyzing or presenting results of experiments generally has one of two
forms: a table of values or a graph.

Again, we do not wish to restrict users unnecessarily by insisting on a particular form of
output that may be difficult to produce for certain programs. Instead, we provide a set of
tools that can process text given in any form to produce a particular internal data format.
This internal format, called sus (for “Script-readable User Statistics”), is text-based and
easily readable by humans (Section 6.4) so users can produce this format directly with their
programs if they wish. The tools that convert from the internal format can also process the
data by performing mathematical calculations.

Users are asked to specify which data values to extract from a given input file using key
words and regular expressions. The Sus Filter Tools use the powerful Python language
expressions for specifying regular expressions and reformatting data. For details on Python,
see http://www.python.org.

Two programs, table2sus and text2sus, convert data to the sus format. The first
program can be used to convert an ASCII table to the internal format and the second converts
a text file in any format to the sus format by selecting from the file the data values indicated
by the user. For converting from the sus format, we provide programs that produce

• an ASCII table (sus2text),

• a LATEX table (sus2latex),

• a plot using gnuplot (sus2plot),

• or another sus file (sus2sus).

All these programs act as filters by default (reading from standard input and writing to
standard output), making it easy to convert any given data file to one of the supported output
file formats.

cat prog.out | text2sus num_nodes time | sus2plot

http://www.python.org

12 Sec. 5: Analyzing the Output

Alternatively, input and output files can be specified for each program using the --input and
--output options, respectively. For example, the above command could be rewritten as:

text2sus --input prog.out num_nodes time | sus2plot

Multiple --input commands are possible and effect a merging of the input files as if the files
were catenated together one after another.

The other command-line options for these tools allow one to specify which data to extract
from the file and the format in which to display the output. In the simplest form, the user
specifies simply the keyword labels for the desired data, as with the above example. The
program will then extract the next word or number after the label as the value to associate
with this label in each data record. If you wish to extract a value other than the next word or
number to associate with this label, regular expressions can be used on the command line to
express the desired value. See the Python documentation or Section 7.7 for more information
on forming regular expressions. See Sections 5.2.2 and 5.2.5 for examples.

The tools that convert from a sus file allow you to manipulate the data in several ways.
In particular, one can

1. add a new field (command-line option: --add).
This can be useful to perform mathematical operations on the data values, or to reformat
the output for pretty printing.

2. sort the data (command-line option: --sort).
The records are sorted according to the sorting expression. Records with the same key
are merged (in accordance with the value given for the --combine option). By default,
the average of numeric values is taken; string values are always simply concatenated.

3. filter out data (command-line option: --filter).
Only records where the expression gives a nonzero value (not "" or 0) are processed.

The switches --add, --sort, and --filter are processed in the same order they appear
on the command line. For filtering, sorting, or adding new data fields, the full expresion power
of Python can be used. This includes numerical expressions:

sus2sus ’--filter=float(upperbound) > float(lowerbound)*100’

(filter out all records for which the upper bound is more than 100 times the lower bound, the
quotes “’” prevent that special characters (“(”, “)” and “>” in this example) are interpreted
by the shell, see Sections 6.2 and 7.1 for more information on quoting and special characters),
formatting expressions similar to printf in C:

sus2sus ’--add=formattedOpt="%-20f"%float(opt)’

(add a formatted opt value, left-justified in a field of 20 characters),
and string manipulation expressions, using Python’s string module:

sus2sus ’--sort=float(split(time,":")[0])’

(sort the records based on the number of hours in a time field with format HH:MM:SS. Note
the float-function that has to be used to sort, e.g. 9 and 10, in the correct order).

This string module, providing functions such as join, split, strip, and replace, is
particularly useful for formatting output. We also provide some extensions:

Sec. 5: Analyzing the Output 13

iff(exp,then,else):

returns <then> if <exp> is not empty (’’, ’0’ or not defined), otherwise <else>.

Example:

sus2sus ’--add=solvedText=iff(solved,"solved","not solved")’

format(val): Formats a number. Optional parameters:

length: minimal length of the output (negative values produce left-justified output),

digits: number of digits after the decimal point,

mindigits: as digits, but numbers near zero have enough digits to be distinguished
from zero,

min: minimal value,

max: maximal value,

pad: padding character, may be:
’0’ for zero padding,
’+’ for +/-,
’-’ for left-justified output.

Examples:
Print opt left-justified in a field of minimal length 20 (produces the same result as the
example illustrating string formatting above).

sus2sus ’--add=formattedOpt=format(opt,length=-20)’

Round the time to two digits with a minimum value of 0.01

sus2sus ’--add=formattedTime=format(time,digits=2,min=0.01)’

savediv(a,b): Divides a by b, returning ’division by zero’ if b is not a nonzero number
or a string representig a nonzero number

Example:

sus2sus --add ’gap=savediv(float(upVal)-float(loVal),loVal)’

If a variable that is used in an expression is not defined, it will take on ’000’ as a default
value. The switch --eval changes this behaviour:

--eval=strict undefined variables cause an error,

--eval=warn undefined variables produce warnings,

--eval=debug print out every expression evaluation, this is very useful for debugging sus

file transformations

--eval=invalid use ’---’ as default (nice for sus2plot).

5.2 Examples

The following examples are extracted from the file sus-tools-demo, which is distributed with
the tool set in the directory examples.

14 Sec. 5: Analyzing the Output

5.2.1 table2sus

The following table is converted to a sus file. The labels of the table are recognized auto-
matically.

Command: table2sus < steinerTab1.txt > steinerTab1.sus

steinerTab1.txt
instance size opt

steiner1 123 123
steiner2 432 434
steiner3 33 44
steiner4 44 33

steinerTab1.sus
{’labels’: [’instance’, ’size’, ’opt’],
’table’: [{’size’: ’123’, ’instance’: ’steiner1’, ’opt’: ’123’},
{’size’: ’432’, ’instance’: ’steiner2’, ’opt’: ’434’},
{’size’: ’33’, ’instance’: ’steiner3’, ’opt’: ’44’},
{’size’: ’44’, ’instance’: ’steiner4’, ’opt’: ’33’}]}

A table is found in the input file by looking for the last non-commented, non-blank line in
the file and determining how many space-separated columns it contains. Then, if no arguments
are given to table2sus, it attempts to find the labels for the table by looking for the first
line containing the correct number of words that could be labels (i.e. alphanumeric words
beginning with a letter). If no labels are found in this way, default labels (col1, col2, etc.)
will be used. Leading #’s are ignored when looking for the labels.

Thus, the same table would result from this input file and we can use sus2text to see the
output as a text table.

Command: table2sus < steinerTab2.txt | sus2text

steinerTab2.txt
gnuplot file of data
#
generated 12-Jul-2002 14:32:04
#
#instance size opt

steiner1 123 123
steiner2 432 434
steiner3 33 44
steiner4 44 33
#
ignore me

output
instance size opt

steiner1 123 123
steiner2 432 434
steiner3 33 44
steiner4 44 33

Sec. 5: Analyzing the Output 15

5.2.2 text2sus

Given a simple text file, a table can be constructed by giving simply labels or labels followed by
regular expressions. The following input file is scanned for instance, running_time, value,
and something more complex: the last word of a line with more at the beginning. This word
gets the label complex. Additionally, we want the values of time as hours and minutes.

Note that the order of the labels does not matter and it is not necessary to have all lables
in each of the records. An exception is the first label: It defines when to start a new record.
(Alternatively one could use the --next switch.)

Command:
text2sus instance running_time value ’complex=^more.* (\w+)’

’time: (?P<hours>.*):(?P<minutes>.*)’ < text2sus.txt >
text2sus.sus

The reason for the ’ ’ in this command is that otherwise the shell gets confused by the *
and the spaces.

text2sus.txt

instance: steiner1.stp
time: 11:23
blablabla
more complicated, we want the last word in this line! 23
value: 123
running_time: 123

instance: steiner2.stp
more 44
time: 11:44
value: 312
running_time: 323

instance: steiner3.stp
time: 11:55
more 45
value: 32
running_time: 532

instance: steiner4.stp
time: 12:04
more 46
value: 44
running_time: 954

text2sus.sus

{’labels’: [’instance’, ’running_time’, ’value’, ’complex’, ’hours’,
’minutes’],

’table’: [{’running_time’: ’123’, ’value’: ’123’, ’minutes’: ’23’,
’complex’: ’23’, ’instance’: ’steiner1’, ’hours’: ’11’},

{’running_time’: ’323’, ’value’: ’312’, ’minutes’: ’44’, ’complex’:
’44’, ’instance’: ’steiner2’, ’hours’: ’11’},

{’running_time’: ’532’, ’value’: ’32’, ’minutes’: ’55’, ’complex’:

16 Sec. 5: Analyzing the Output

’45’, ’instance’: ’steiner3’, ’hours’: ’11’},
{’running_time’: ’954’, ’value’: ’44’, ’minutes’: ’04 ’, ’complex’:

’46’, ’instance’: ’steiner4’, ’hours’: ’12’}]}

5.2.3 merging files and adding fields

This example features merging of different sus files and creating new data fields (columns)
in the table.

Command:
sus2text --sort instance --add solved=opt==value --input

steinerTab1.sus --input text2sus.sus instance running_time
The input values come from steinerTab2.sus and text2sus.sus, the output of the two

previous examples. As index variable, the label instance (common to the two input files) is
used. The additional label solved is introduced, set to the value opt==value, where opt is a
label in demofile1.sus and value a label in demofile2.sus.

output

instance running_time solved

steiner1 123 1
steiner2 323 0
steiner3 532 0
steiner4 954 0

5.2.4 filtering

When converting from a sus file to another format, certain records can be filtered out using
the --filter option.

Command: sus2text ’--filter=instance<"steiner3"’ < text2sus.sus
The ’ ’ are needed because of the " and <, which would be interpreted by the shell otherwise.

output

instance running_time value complex hours minutes

steiner1 123 123 23 11 23
steiner2 323 312 44 11 44

For comparison, the unfiltered output is:
Command: sus2text < text2sus.sus

output

instance running_time value complex hours minutes

steiner1 123 123 23 11 23
steiner2 323 312 44 11 44
steiner3 532 32 45 11 55
steiner4 954 44 46 12 04

Sec. 5: Analyzing the Output 17

5.2.5 command option file

This example features an option file and different ways to define new labels. Notice that the
table in the output is not a complete table. The last two entries don’t really have a lastword
because the last word is used as the value for the free: label already. The default value of
000 is used for the third label in these entries.

Command: text2sus @testfree.dat < testfree.txt | sus2text

testfree.data

This is a command-line file for text2sus
Each option is defined in a line, empty lines or lines
beginning with "#" are ignored.

--next=\n
This indicates that each line is a separate record

test
We want to parse for the keyword test.

freetext=free:\s*(\w+)
And for the first word after "free:", the label for this will be
"freetext".

(?P<lastword>\w+)$
And for the last word in the line, getting the label "lastword"

testfree.txt

test: 123, free: sadds, ewrwre
test: 444, free: dfgf, trwret
test: 123, free: sadds
test: 444, free: dfgf

output

test freetext lastword

123 sadds ewrwre
444 dfgf trwret
123 sadds 000
444 dfgf 000

5.2.6 sorting and combining values in different ways

When converting from a sus file to another format, by default all entries are extracted in the
order given. If one wishes to sort the entries according to the value of a certain expression,
multiple entries with the same value must be combined somehow. By default, the average of
the numeric values is taken (string values are simply concatenated).

Command: table2sus < graph.out | sus2text --sort ’float(vertices)’

graph.out

18 Sec. 5: Analyzing the Output

#vertices edges run1 run2

10 20 123.6 141.3
20 80 2321.4 842.9
10 40 432.8 832.0
20 40 943.1 314.2

output

vertices edges run1 run2

10.0 30.0 278.2 486.65
20.0 60.0 1632.25 578.55

One can combine multiple entries using the minimum, maximum, mean, sum, or product
of the values using the --combine option. Here we take the minimum.

Command:
table2sus < graph.out | sus2text --sort ’float(edges)’

--combine min

output

vertices edges run1 run2

10 20 123.6 141.3
10.0 40.0 432.8 314.2
20 80 2321.4 842.9

One can also sort the entries according to some expression. Here we sort the records based
on the total time for both runs.

Command:
table2sus < graph.out | sus2text

’--sort=float(run1)+float(run2)’

output

vertices edges run1 run2

10 20 123.6 141.3
20 40 943.1 314.2
10 40 432.8 832.0
20 80 2321.4 842.9

5.2.7 adding fields with formatting

This example shows some of the possibilities for reformatting data. An additional field
avg_time, which is a average of two existing fields run1 and run2, is added to each record.
Since all values in a sus file are stored as strings, a conversion to a number is necessary before
using these in arithmetic expressions. The computed value is formatted in a field of width 6

Sec. 5: Analyzing the Output 19

with only one digit after the decimal point. This is done using the built-in string formatting
from Python, which is similar to printf in C.

Command:
table2sus < graph.out | sus2sus ’--add=avg_time="%6.1f" %

((float(run1)+float(run2))/2)’ > avgrun.sus

avgrun.sus

{’labels’: [’vertices’, ’edges’, ’run1’, ’run2’, ’avg_time’],
’table’: [{’vertices’: ’10’, ’avg_time’: ’ 132.4’, ’run2’: ’141.3’,

’edges’: ’20’, ’run1’: ’123.6’},
{’vertices’: ’20’, ’avg_time’: ’1582.2’, ’run2’: ’842.9’, ’edges’:
’80’, ’run1’: ’2321.4’},

{’vertices’: ’10’, ’avg_time’: ’ 632.4’, ’run2’: ’832.0’, ’edges’:
’40’, ’run1’: ’432.8’},

{’vertices’: ’20’, ’avg_time’: ’ 628.6’, ’run2’: ’314.2’, ’edges’:
’40’, ’run1’: ’943.1’}]}

5.2.8 sus2plot

Now we plot the values in the input file used in the previous example. We plot run1, run2,
and avg_time against edges. The values of several lines with the same number of edges
are combined by taking the average. The option --combine can be used to provide another
combining rule as illustrated previously.

Command:
sus2plot --sort ’float(edges)’ run1 run2 avg_time <

avgrun.sus

0

500

1000

1500

2000

2500

20 30 40 50 60 70 80

edges

run1
run2

avg_time

5.2.9 sus2latex

This simple example illustrates what the tables produced by sus2latex look like.
Command: sus2latex < avgrun.sus

20 Sec. 6: File Formats

output

%%sus2latex, Revision 1.105, 2002/11/14
% \begin{tabular}{|l|l|l|l|l|}
% vertices & edges & run1 & run2 & avg_time \\ \hline

10 & 20 & 123.6 & 141.3 & 132.4 \\
20 & 80 & 2321.4 & 842.9 & 1582.2 \\
10 & 40 & 432.8 & 832.0 & 632.4 \\
20 & 40 & 943.1 & 314.2 & 628.6 \\

% \end{tabular}

6 File Formats

6.1 labrc Files

The format of the two configuration files (~/.labrc in the user’s home directory, and labrc
in the current working directory) created by labsetup and read by the tools is as follows:

• Lines beginning with # and empty lines are ignored.

• Lines beginning with + are joined with the previous line.

• Different options are placed on different lines.

• The files can have different sections for the different programs. The sections are sepa-
rated by lines containing the name of the program in square brackets (e.g., [labrun]).
The first section, before the first separator, contains global settings for all programs.

For each tool, it is possible to tell the tool to ignore the ~/.labrc and ./labrc file by
using the switch --nolabrc.
Example:

~/.labrc

global settings for all tools
--verbose

end of global settings

[labrun]
--comment=A comment from ~/.labrc

[labmex]
--Make=gmake

Switches and arguments for the lab-commands are searched for in three places:

1. the command line,

2. a labrc file in the current directory,

Sec. 6: File Formats 21

3. a .labrc in the user’s home directory.

Usually, switches found first override switches found later, e.g., a -x ~/foo in ~/.labrc
is overridden by a --exec=~/bar from the command line. Exceptions are switches that
accumulate (e.g., the --comment, --cvs, and --env switches of labrun). They are just
collected from all sources.

6.2 Command Input Files

As some of the tools provide a lot of switches and parameters, it is possible to store the
command-line arguments in files and load them into the command line with @<filename>.
This also has the advantage that there is no need to quote and escape special characters that
are usually interpreted by the shell.

A command input file has the same format as the configuration files (Section 6.1). Addi-
tional notes:

• The input read from the file simply replace @<filename> in the command line. Thus,
it is possible to specify both switches and arguments in command input files.

• Command input files may be nested.

• Every line yields a single argument of the command line.

• Each argument is passed to the tools as a single “word” with spaces in the argument
escaped to glue the word together and special characters escaped to preserve their in-
tegrity. Two exceptions are:

1. Switches that require a value:
(See 7.1 for more information about the format of command-line switches.) Usually
one must put the value directly after the short switch name:

-lnew_log

or after an = when using the long switch name:

--log=new_log

For convenience, white space is allowed in command input files between the name
of the switch and its value:

-l new_log
--name new_name

2. The first line that is not a switch:
If this line contains spaces, it will be split into several words (see example below).

Example:

labrun.opt

command-line options for labrun
--cvs=~/steiner_c
--log=~/tmp/exptest
--exec=~/steiner_c

22 Sec. 6: File Formats

--name=test

--env=LD_LIBRARY_PATH
--comment=tagtest2
--comment=EnvTest=$PATH
--comment=FileTest=@~/.cshrc:PATH\s+(.*)
--comment=ExecTest=‘head -1 ~/.cshrc‘:.*\s(.+)
-v
steiner
grid_solve.str
problem=dmxa1200.stp

There are different ways to specify the command to be executed. You
need not indent it. And you can put everything on one line:
#
steiner grid_solve.str problem=dmxa1200.stp
#
As it is the first argument for labrun and it contains spaces, this
line will be split into three lines. The following is equivalent:
#
steiner grid_solve.str
+ problem=dmxa1200.stp
#
Note that only the first line is split. Thus, the following won’t
work; it calls "steiner" with one argument containing a space.
#
steiner
grid_solve.str problem=dmxa1200.stp
#
Because we don’t want to have the same mess with special characters
as with the shell, the following is illegal in command-line files
and will be rejected:
#
steiner ’some argument containing a space’ ’another argument’

NEX
with NEX starts the next experiment
-v
--cvs=~/steiner_c
--log=~/tmp/exptest
--exec=~/steiner_c
--name=grid_solve2
steiner grid_solve2.str problem=dmxa1200.stp

Notice that, though section separators (e.g., [labrun]) are possible in command input
files, they are not necessary if the file contains options for only a single tool since all commands
before the first separator are used by all tools.

Sec. 6: File Formats 23

6.3 .log Files

6.3.1 labrun

The .log file generated by labrun is a plain text file. It should be possible for anyone reading
the file to understand it immediately, but a particular format is required by the labrerun
tool, and this is described here.

A .log file consists mainly of a set of label-value pairs. Labels and values are both
character strings and a colon is used to separate a label from its value. This implies that
labels cannot contain colons in their names; values may however. Values can be spread over
multiple lines by using a + at the beginning of continuation lines.

A value may be followed by an indication of how the value was produced (to facilitate
reproducing this value from the labrerun tool). This means, the following three formats of
label-value pairs are possible in a .log file:

1. label: value

2. label: value {cmd}

3. $label: value

Formats 2 and 3 are for labels provided exclusively by the user (either on the command line
or via a configuration file). Format 3 is used for environment variables recorded in response
to the --env option for labrun. Format 2 is for all other kinds of comments. Pairs using
format 1 may be provided by the user or by the labrun tool. The following table lists the
labels reserved for use by labrun together with explanations of their values.

label explanation
labrun Release release number of labrun
Start date format: weekday month day HH:MM:SS timezone year
OS operating system
Hardware hardware information
Machine hostname
Processor speed and name
Memory size base memory size
L2 data cache L2 data cache size
CVS dirs colon-separated list of directories checked with CVS
CVS date tag current date stamp
Previous logs present if the run was produced by labrerun
Command command line
Exec dir execution directory
Current dir working directory
Output file name of the output file
Error file name of the error file
Error level exit code if command failed
User time estimate of the user time spent for the command (in seconds)
Stop date format: weekday month day HH:MM:SS timezone year

Comments, which will be ignored by labrerun, can be added to a log file in the following
ways.

• All lines beginning with a # are regarded as comments and ignored.

24 Sec. 6: File Formats

• All lines following a line containing only hyphens are ignored. (This is useful for adding
long comments at the end of a file or for using labrerun with a log file created using
the --one option for labrun.)

Example:

sample.log

labrun Revision: 1.92

Start date: Fri Aug 2 15:49:42 CEST 2002
OS: Linux 2.2.19 #4 Tue Aug 7 16:06:42 CEST 2001
Hardware: i686
Machine: mpino1109
Processor: 225 MHz Pentium III (Coppermine)
Memory size: 257920 kB
L2 data cache: 256 KB

Compiler version: 3.1 {‘$CC -v‘:version}
$CC: gcc
$CXXFLAGS:

CVS dirs: .
CVS date tag: 2002-08-02 13:49 GMT

Command: labmex ’--Make=gmake’ --clean=both --log=lab_clog
+ --Make=gmake sort-demo 1000 10
Exec dir: /home/hert/talks/tool_set/tutorial/sort
Current dir: /home/hert/talks/tool_set/tutorial/sort
Output file: ./lab_log/sort-demo-2002-08-02-154942.out

User time: 0.9 sec
Stop date: Fri Aug 2 15:49:44 CEST 2002

6.3.2 labschedule

The log file produced by labschedule has a format similar to that produced by labrun. It
contains, however, information relevant only to the scheduling of the different tasks. In uses
therefore a different set of labels and values as described in the following table.

label explanation
labschedule Release release number of labschedule
Start date format: weekday month day HH:MM:SS timezone year
Hosts the set of hosts labschedule had to choose from
Current dir the directory in which labschedule was called
Output file the output file, containing output of successful experiments
Error file the error file, containing output for unsuccessful experiments
Command line the labschedule command
Command the executable command for the tasks scheduled
Stop date format: weekday month day HH:MM:SS timezone year

Sec. 6: File Formats 25

Between Command and Stop date there are two lines for each experiment that is run with the
following format:

HH:MM:SS: <host>: started ’%1-%2-...’.
HH:MM:SS: <host>: finished ’%1-%2-...’ [<error message>].

where HH:MM:SS is the time a particular job was started or finished and the variables %1, %2,
etc. are substituted with their values for each particular experiment. If an experiment fails, a
message containing its error code and the command that caused this failure will be repeated.
Experiments that are skipped are also so noted in the log file.
Example:

schedule-sample.log

labschedule Release: 0.6

Start date: Thu Nov 7 14:59:23 CET 2002
Hosts: mpino1109
Current dir: ~/tool_set/explab/example/tutorial
Output file: ./lab_log/schedule-2002-11-07-145923.out
Error file: ./lab_log/schedule-2002-11-07-145923.err
Command line: /home/hert/bin/labschedule -f range\(100,200,50\) -f
+ 10\ 20 labmex sort-demo %1 %2

Command: labrun --log=/home/hert/example/tutorial/lab_log
+ --name=schedule-%1-%2 labmex sort-demo %1 %2

14:59:23: mpino1109: started ’100-10’.
14:59:28: mpino1109: finished ’100-10’.
14:59:28: mpino1109: started ’100-20’.
14:59:32: mpino1109: finished ’100-20’.
14:59:33: mpino1109: started ’150-10’.
14:59:38: mpino1109: finished ’150-10’.
14:59:38: mpino1109: started ’150-20’.
14:59:42: mpino1109: finished ’150-20’.

Stop date: Thu Nov 7 14:59:43 CET 2002

6.4 sus Files

The sus (standing for ”Script-readable User Statistics”) file is a text file with a Python-syntax
dictionary with two entrys:

table This is a list of dictionaries. Each dictionary represents one data record, which consists
of label :value pairs. All labels and values are strings (enclosed in single quotes).

labels This is a list of labels used in the table. It is used mainly to specify the order of the
labels, as the keys of a dictionary are not ordered.

There may be some ’newline’ characters in the sus file to improve readablility.
When writing a sus filewith sus2sus, text2sus or table2sus, one can add the switch

--binary. The sus filewill then be written in a binary format. The format is produced

26 Sec. 6: File Formats

by the python standard module “pickle” and is much faster to parse by the computer, but
unreadable for humans.

Example:

test.sus

{’labels’: [’instance’, ’size’],
’table’: [{’size’: ’450’, ’instance’: ’test1’},
{’size’: ’694’, ’instance’: ’test2’},
{’size’: ’90’, ’instance’: ’test3’}]}

is a sus file representing the table

instance size
test1 450
test2 694
test3 90

Sec. 7: The Current Tools 27

7 The Current Tools

7.1 Command-line Options

Each of the tools in our set has a command-line interface following the style of other common
Unix tools and also allows command-line options to be specified in a file (Section 6.2), whose
name is given on the command line. As for most Unix tools, almost all command options
have both long and short forms. The short forms start with a single “-”, the long ones with
two. Some options take additional parameters. With the short form, these parameters can be
put directly after the command option (“-nnewname”) or can be separated from it by a blank
(“-n newname”). With the long form, there may be a “=” (“--name=newname”) or a blank
(“--name newname”) separating the parameter from the command option. The long forms
may be abbreviated (“--na=newname”) as long as the prefix is unique among the switches
available for the tool in question.

If some parameters contain special characters, such as “*”, “(” or “"”, this can lead
to conflicts with the shell, which tries to interpret these characters in its own way. The
interpretation of a character can be prevented in most shells, by either putting a “\” before
the character or by quoting the word (or parts containing the special characters) with “’”.
For example:

sus2sus ’--filter=int(points)>100’ --add quad=simp*simp

Notice that when an option is enclosed in quotes, the “=” separator between the option name
and the value is necessary.

Another way of getting around the problem of these special characters is the use of com-
mand input files (Section 6.2). Every character is such a file is treated literally, which means
that special characters need not (indeed must not) be quoted. You can insert the param-
eters of a command inpu file at any point in the command line using “@ <filename>” or
“@<filename>”. All styles of input on the command line can be mixed:

labrun --cvs=~/dir --name test -ccomment1 -c comment2 @optfile

All lab-programs start other programs. This gives rise to the additional problem that
when passing the commands via a shell command, the special characters have to be quoted
again. For this reason the characters “[]<>()$ *?\"’\|;&” are quoted by a backslash once
read in by the tools. If you want the characters to be interpreted by a shell, you have to
include a “sh -c” command explicitly. (See page 38 for an example.)

28 Sec. 7: The Current Tools

7.2 labsetup

Purpose:

Generate an ASCII configuration file that stores information about the context of a
certain (set of) experiment(s).

Usage:

labsetup [<options>]

Options:

-h, --help print a help message

-l, --local create the file labrc in the current directory instead of .labrc in the
user’s home directory.

-v, --verbose verbose mode

--version print version information

Description:

When the program is run, the user will be asked to provide information about the lab
environment that is being set up. By default, this is the global environment, and for
each question asked the current value represented in any existing ($HOME)/.labrc file
will be displayed. If no value is set in this file, the default value will be displayed. The
user can then accept the current (possibly default) value or change the value as desired.
Changing back to a default value can be done using the string “use default” as the
answer to a non-yes/no question.

When the -l option is used, indicating that a local environment is being set up, the
values displayed with each question represent the settings from the global resource file
as well as any labrc file in the current directory with the settings in the local file taking
precedence over those in the global file when conflicts arise (i.e., the settings labrun
would use). Questions corresponding to options that are set in the global file and cannot
be changed in the local file will not be asked.

Result:

A file containing the corresponding command-line options for the tools. By default, the
file is called ($HOME)/.labrc.

Sec. 7: The Current Tools 29

7.3 labrun

Purpose:

Tool for running benchmarking or other non-interactive tests

Usage:

labrun [<option>] ... <program> [<argument>] ...

Options:

-a, --autocvs automatically ’commit’ and ’update’ CVS if necessary

-b, --batch run in background

-C, --cvs=<DIRS> check CVS in <DIRS> (colon-separated lists and multiple entries are
allowed) (default: ’.’)

--nocvs do not check CVS

-c, --comment=<TAG> specifies a tag that will be recorded in the .log file. The format
of <TAG> is:

[<LABEL> =] <STRING>
Inside the <STRING> the following expressions are possible:

$<ENVVAR> will be replaced by shell variable <ENVVAR>,
@<FILE> will be replaced by file <FILE>,
‘<COMMAND>‘ will be replaced by output of <COMMAND>.
% will be replaced by the output file’s name

Each of the first three statements may be followed by a modifier:
:<PATTERN>

If the regular expression <PATTERN> contains parentheses, only the match corre-
sponding to the parentheses will be taken. Otherwise the first word after the regular
expression will be taken. The <PATTERN> may not contain spaces. Use \s instead.
Some documentation for regular expressions is given in Section 7.7. If <STRING>
begins with 0x, the number following this will be converted from hexidecimal to
decimal.
Examples:

OS=‘uname -srv‘
Processor Speed=@/proc/cpuinfo:cpu.MHz MHz
Processor Name=It’s a @/proc/cpuinfo:model.name[\s:]+(.*)
Solution=@%:final.value

-d, --date=<DATE> use the CVS versions current on the given date (<DATE> should be
in a format understandable by CVS)

--keep keep old files (in conjunction with --date)

-e, --env=<ENV> record the value of environment variable <ENV> (will be restored when
using labrerun.)

-h, --help print a help message

--help-comment print help message for formulating comments

-i, --info just give environment info (and evaluate --comment switches)

-l, --log=<DIR> where to put log files (default: ’./lab_log/’)

30 Sec. 7: The Current Tools

-n, --name=<TAG> name to use instead of program name in file names

-1, --one just produce one .log file with different sections

-t, --tag=<TAG> use <TAG> instead date-time stamp in file names

-v, --verbose verbose (multiple -v increases verbosity)

--version print version information

-x, --exec=<DIR> where to execute program (default: ’.’)

--nolabrc do not read ~/.labrc and ./labrc

With @FILE or @ FILE (some) command-line options are read from FILE (see section
6.2).

As mentioned in Section 2.2.2, the keyword NEX (for “new experiment”) can be used in
the command line to indicate that what follows is the input for a new experiment. For
an example of this, see Section 6.2.

Result:

Files <NAME>-<TAG>.log and <NAME>-<TAG>.out will be produced in the log directory
(unless the --one option is used). If there was some output to standard error, a file
<NAME>-<TAG>.err will also result. For each of the .out, .log and .err files created,
a link will be created in the log directory by the name of current.<ext>.

Examples:

• labrun steiner -v closed 41 30

Executes the program steiner with arguments -v closed 41 30, creating a log file
and an output file in the default log directory lab log.

• labrun --cvs .:/home/hert/src --log ../lab --name example
--tag closed_41_30 steiner -v closed 41 30

(The command should be all on one line, of course.) Overrides the default CVS di-
rectory (adding a directory in addition to the current one), the default log direc-
tory (using ../lab instead of ./lab_log) and the default file name prefix (using
example-closed_41_30 instead of steiner-<date-time>).

• labrun -e CC -c ’Compiler version=‘$CC -v‘:version\s+(\S*).*’ timings

Records the value of the environment variable CC (the compiler) and the version number
of this compiler in the log file. Notice that the version number is achieved by executing
the command $CC -v and then looking for the first set of non-spaces following the word
“version” in the resulting text. Notice also the different quoting required. The quotes
(’) around the argument to -c are required because of the space in the label for the
value and the stars used in the regular expression. The quotes (‘) around the command
are required to indicate that it is a command to be executed.

• labrun -n timings labmex -x benchmark -m CC=gcc ~/src/timings

Uses labrun in conjunction with labmex. Without the -n argument to labrun, the
name of the experiment would be labrun, which is probably not what you want. See
Section 7.5 for explanation of the labmex arguments.

Sec. 7: The Current Tools 31

• labrun ssh turing labmex fun 123 NEX ssh oracle labmex fun 123

Runs two experiments. The first compiles the program fun on the machine turing
and then executes it with arguments 123. The second experiment compiles the same
program on the machine oracle and executes it using the same arguments. Without
additional arguments all commands are executed in the user’s home directory on these
two machines.

• labrun ssh turing ’cd benchmark; labmex fun 123’

Runs the experiment above on the machine turing in the directory benchmark.

32 Sec. 7: The Current Tools

7.4 labrerun

Purpose:

rerun an experiment using information recorded in a .log file

Usage:

labrerun [<option> ...] <log file>

Options:

-b, --batch run in background

-c, --comment=<TAG> will be stored in the .log files (see ’labrun --help-comment’ for
details)

-e, --env=<ENV> record the value of environment variable <ENV> (will be restored, when
using labrerun)

-h, --help print a help message

-i, --ignore=<ENV> ignore the value of environment variable <ENV> recorded in the
log file; use the current setting instead

-l, --log=<DIR> where to put log files (default: location of <log file>)

-n, --name=<TAG> name to use instead of program name in file names

-t, --tag=<TAG> use <TAG> instead date-time stamp in file names

--keep keep old files that were checked out to rerun the experiment

--nocvs do not revert to CVS version recorded in log file; use current version instead

--nolabrc do not read ~/.labrc and ./labrc

-1, --one just produce one .log file with different sections

-p, --print print the labrun command that would be created but don’t execute it

-v, --verbose verbose mode

--version print version information

-x, --exec=<DIR> where to execute program (default comes from log file)

With @FILE or @ FILE (some) command-line options are read from FILE (see section
6.2).

Result:

The same as for labrun.

Examples:

• labrerun lab_log/current.log

Reruns the last experiment

• labrerun --nocvs lab_log/current.log

Reruns the last experiment using the current version of the code

Sec. 7: The Current Tools 33

• labrerun -e LD_LIBRARY_PATH -l ../log -n new -t 20_5 lab_log/current.log

Reruns the last experiment (lab log/current.log) recording the value of the environ-
ment variable LD LIBRARY PATH in the new log file. The log file is stored in the directory
../log and has the name new-20 5.log.

• labrerun -i LD_LIBRARY_PATH ../log/new-20_5_10.log

Reruns the previous experiment, using the current value of LD LIBRARY PATH instead of
the one recorded in the log file.

34 Sec. 7: The Current Tools

7.5 labmex

Purpose:

make and execute a program

Usage:

labmex [<option>] ... <executable> [<arguments>]

Options:

-c, --clean=[before|after|both] do a ’make <make_options> clean’ before, after,
or before and after compiling the target

-h, --help print a help message

-l, --log=<DIR> specifies the directory in which the compile log will be created (default
is ’.’ or, if called by labrun, the directory in which labrun’s log files are stored).
This log file is not created if compilation succeeds.

-k, --keep always keep the compile log

-m, --makeflag=<OPTION> pass the given option to each call of make; use multiple -m
options for multiple make options

-M, --Make=<COMMAND> use <COMMAND> instead of ”make” when compiling the exe-
cutable

--nolabrc do not read ~/.labrc and ./labrc

-t, --target=<TARGET> target for make (default is <exectuable>); multiple -t options
are allowed

-v, --verbose verbose mode

--version print version information

-x, --exec=<DIR> where to execute <executable> (default is ’.’)

With @FILE or @ FILE (some) command-line options are read from FILE (see section
6.2).

Result:

Program is compiled and run. If the --keep option is used or the compilation fails, a
compile log and a link to this file called current.clog is created in the current directory,
the log directory of labrun if called from labrun, or the log directory specified on the
command line.

Examples:

• labmex --clean both timings 10 20 5

Performs a make clean and then a make timings. Runs the program timings with
arguments 10 20 5. Then does a second make clean.

• labmex -x benchmark -m -DCXXFLAGS=-O3 -t timings ~/src/timings

Performs a make -DCXXFLAGS=-O3 timings in the current directory. Moves to the di-
rectory benchmark and executes the command ~/src/timings in that directory.

Sec. 7: The Current Tools 35

• labmex -M gmake -m -C.. -m ’-DCXXFLAGS=-NDEBUG -NDEBUG2’
-x .. -t all timings

Performs a gmake -C.. ’-DCXXFLAGS=-NDEBUG -NDEBUG2’ all command in the cur-
rent directory, which compiles the target all in the parent directory (the -C.. option
of gmake). Moves to the parent directory and executes the command timings.

36 Sec. 7: The Current Tools

7.6 labschedule

Purpose:

starts multiple commands (possibly on multiple hosts or on a multiprocessor environ-
ment)

Usage:

labschedule [<option>] ... <executable> [<arguments>]

Options:

-f, --for=<WORDLIST> loop through all words from <WORDLIST>; in the command line
the corresponding loop variable (%1, %2, ...) will be replaced by words from
<WORDLIST>. (See the ’for-loop’ section below for details.)

--nesting=<N> only the first <N> loops will form individual ’labrun’ calls;
the remaining loops will incorporated into one experiment (with executable
labschedule --direct ... <executable> ...)

--macro=<LABEL=WORDLIST> define macro (%LABEL will be expanded to WORDLIST)

--hosts=<HOSTLIST> execute on hosts <HOSTLIST> (default: localhost)

--maxtasks=<N> maximum tasks started on one host (default: 1)

--check=<EXP> condition to test to determine if host can accept another task (typically
for multi-user hosts; see the ’check’ section below)

-n, --name=<TAG> <TAG> for log files (default: ’schedule’)

-l, --log=<DIR> <DIR> for log files (default: ./lab_log)

-i, --ignore ignore error codes from failed experiments, continuing with the rest of
the loop (default: abort)

--keep keep old (incomplete, failed) log files (default: delete them)

--noskip don’t skip previously performed runs (default: skip)

--prefix=COMMAND prefix for each command (default: ssh %host; cd %curdir)

--nolabrun don’t use ’labrun --log=%logdir --name=%name-%1-%2-...’ as command
executed

--labrunflag=<OPTION> additional labrun option; use multiple --labrunflag options
for multiple labrun options

-d, --direct execute loops directly (see ’direct’ section below)

-b, --batch run in background

-p, --print do not perform the commands, just print them

-v, --verbose verbose mode

--nolabrc do not read ~/.labrc and ./labrc

With @FILE or @ FILE (some) command-line options are read from FILE (see section
6.2).

Sec. 7: The Current Tools 37

Result:

For every combination of the words in each of the --for commands, an experiment is
started. In addition to the log and output files produced by labrun, labschedule keeps
track of its own actions in three files: a .log file that logs all relevant actions, a .out
file that holds the output of all successful runs, and a .err file that holds the output of
all failed runs.

Defining For-Loops: The word lists for the for-loops can be defined in several ways. The
following expressions are possible:

$<ENVVAR> will be replaced by shell variable <ENVVAR>,

@<FILE> will be replaced by file <FILE>,

‘<COMMAND>‘ will be replaced by output of <COMMAND>.

Each of the three statements may be followed by a modifier:
:<PATTERN>

If the regular expression <PATTERN> contains parentheses, only the match corresponding
to the parentheses will be taken. Otherwise the first word after the regular expression
will be taken. The <PATTERN> may not contain spaces. Use \s instead. Some documen-
tation for regular expressions is given in Section 7.7.

Furthermore, the characters ~,* or ? in words will be interpreted as a shell would.

eval(EXPRESSION) will be replaced by the evaluation of the python EXPRESSION,
range(X) is a shortcut for eval(range(X)) and will be replaced by the words
0, 1, 2, 3, . . . , (X − 1). The functions of the python modules “random” and “math” can
be used.

Expansion of Variables: Some variables are expanded before executing a command. These
can be used in --check, --labrunflag, --prefix, --for, and in the arguments to the
experiment.

%curdir the current directory

%logdir full path to the log directory

%host the host for the current experiment

%prefix either ssh %host cd %curdir; or an empty string

%name the name, provided by --name (default: schedule)

%maxtasks number of tasks per host, provided by --maxtasks

%nesting nesting level, provided by --nesting

%1, %2, ... will be replaced by the current word from the first, second, and so on --for
word list. Here one can use modifiers similar to those of tcsh, (e.g., %1:h). Example
(if %1 gives /dir/name.ext):
h)ead (directory) %1:h /dir
t)ail (name) %1:t name.ext
e)xt (extension) %1:e ext
r)oot (skip ext) %1:r /dir/name
s)ubst (regular expression substitu-

tion /from/to/, any charac-
ter may be delimiter)

%1:s-e(.)-\1E- /dir/nam.ExEt

38 Sec. 7: The Current Tools

More variables can be defined by the --macro=LABEL=WORDLIST option. Valid LABELs
are alphanumeric and begin with a letter. Two predefined macros are:

• %idle=‘%prefix vmstat 1 2‘:(?s).*\D(\d+)
reads the host’s idle percentage (useful for --check) ((?s) makes .* match also
newlines, \D is [^0-9] and (\d+) returns the last number printed by vmstat.)

• %check=%idle > 5
(useful for --check=%check on multi-user systems, see below)

Checking Idle Time:

By default, every host gets assigned %maxtasks tasks. On multiuser systems it may
be advisable to check if the host can accept a further task. This can be done with the
--check switch:

--check=<EXP> expression to check, if host can accept another task.
The results of commands, contents of files, and values of environment variables can
be incorporated into EXP in the same way they can for for loop values. (See two
sections above).

Example:

• --check=‘ssh %host w‘:load.average < %maxtasks
reads the load of the host using the w command.

• --check=‘ssh %host vmstat 1 2‘:[^@]*([0-9]+) > 5
--check=‘%prefix vmstat 1 2‘:[^@]*([0-9]+) > 5
--check=%idle > 5
--check=%check
reads the idle percentage of the host using the vmstat command (all variants resolve
to the same command).

Using the --direct switch: The --direct switch is used internally for performing multi-
ple runs of a program as one experiment when --nesting is used. If both --direct, and
--nesting=<LEVEL> are given, labschedule assumes that <LEVEL> loops have already
be processed (i.e., the first --for of the command line will be treated as <LEVEL>+1).
The main benefit from using --nesting is that output of multiple commands is put in
one log and output file.

Nevertheless, the switch is useful for completely different things:

• labschedule --direct --for=*.ps ps2pdf %1 %1:r.pdf
call ps2pdf on all *.ps files of the current directory

• labschedule -d -f*.jpg sh -c ’djpeg %1|pnmscale 0.5|cjpeg>sml/%1’
make small jpgs in a different directory (we have to add sh -c because we want
the special characters | and > (see Section 7.1) to be interpreted by shell)

• labschedule --direct --for=’hert polzin kettner schaefer’ finger %1
finger the explab developers

Examples:

• labschedule --for="def1 def2 def3" --for=range(5) isp %1
Single host: Start the program isp with the three different parameters, and each com-
mand 5 times, summing to 15 executions.

Sec. 7: The Current Tools 39

• labschedule --hosts="comp1 comp2 comp3 comp4" --for=*.stp steiner %1
Compute cluster: For each *.stp file in the current directory, start a command. Use
the four mentioned hosts to perform the runs.

• labschedule --maxtasks=20 --check=%check --for=eval(map(lambda s:
s**2,range(100))) --for=range(2,11,2) calc %1 %2

Multiprocessor, multi-user system: Start calc with the first 100 square numbers, and
for each square number with the five even numbers between 2 and 10 (500 executions
in total). Commit maximal 20 tasks at a time, and check if there is still some idle time
on the processors.

• labschedule --for="D E F" --for=/dat/%1/*.stp --nesting=1
--labrunflag=--cvs=~/src --labrunflag=--autocvs steiner %2

For each of the three directories ~/dat/D, ~/dat/E, and ~/dat/F, start an experiment
(with the given labrun options. In each of these experiments, start steiner with every
*.stp file in the current directory.

• labschedule --for="eval(map(lambda s:randint(1,1000),range(20)))" gugl %1
Start gugl with 20 random integers between 1 and 1000.

40 Sec. 7: The Current Tools

7.7 text2sus

Purpose:

Part of the Sus Filter Tools : Scans a text for keywords and outputs a sus file.

Usage:

text2sus [<option>] [<label>|<label>=<regexp>|<regexp>] ...

Options:

-i, --input=<FILENAME> read from <FILENAME> (default: ’-’)

-o, --output=<FILENAME> write to <FILENAME> (default: ’-’)

-n, --next=<REGEXP> defines when to start a new record. (default: first label). For
example, if you want each line to be a separate record, you can use --next=\n

-b, --binary store sus file in binary format (default: plain ascii format)

--nolabrc do not read ~/.labrc and ./labrc

With @FILE or @ FILE (some) command-line options are read from FILE (see section
6.2).

Defining Labels:

There are three possibilities how to define a label:

<LABEL> Take the first word or number after any occurrence of the <LABEL>.

<LABEL>=<REGEXP> Take the first group defined in <REGEXP>. If there are no parentheses
in <REGEXP>, again take the next word or number.

<REGEXP> (containing groups with labels, ”(?P<label>...)") Take every labeled
group defined in <REGEXP>.

Thus,
"label",
"label=label",
"label:label[:= \t]*(\w+)", and
"label[:= \t]*(?P<label>w+)"

will do the same thing. In fact the regular expression is even a bit more com-
plicated to capture a floating point number if that seems to be the next word:
label[:= \t]*(?P<label>[+-]?\d+\.?\d*([eE][+-]?\d+)?|\w+)

Regular Expressions: 1

A regular expression (or REGEXP) specifies a set of strings that matches it.

Regular expressions can be concatenated to form new regular expressions; if A and B are
both regular expressions, then AB is also an regular expression. If a string p matches A
and another string q matches B, the string *pq* will match AB.

A brief explanation of a part the format of regular expressions follows. For further infor-
mation and a gentler presentation, consult the Regular Expression HOWTO, accessible
from http://www.python.org/doc/howto/.

1The description of regular expression is extracted and modified from Python’s documentation. For more
detailed information see http://www.python.org.

http://www.python.org/doc/howto/
http://www.python.org

Sec. 7: The Current Tools 41

Regular expressions can contain both special and ordinary characters. Most ordinary
characters, like ‘A’, ‘a’, or ‘0’, are the simplest regular expressions; they simply match
themselves. You can concatenate ordinary characters, so "last" matches the string
‘last’. (In the rest of this section, we’ll write REGEXP’s in "this special style",
usually without quotes, and strings to be matched ‘in single quotes’.)

Some characters, like ‘|’ or ‘(’, are special. Special characters either stand for classes
of ordinary characters, or affect how the regular expressions around them are interpreted.

The special characters are:

‘.’ (Dot.) In the default mode, this matches any character except a newline.
‘^’ (Caret.) Matches the start of the string and immediately after each newline.
‘$’ Matches the end of the string and before a newline. "foo" matches both ’foo’ and

’foobar’, while the regular expression "foo$" matches only ’foo’.
‘*’ Causes the resulting REGEXP to match 0 or more repetitions of the preceding

REGEXP, as many repetitions as are possible. "ab*" will match ’a’, ’ab’, or ’a’
followed by any number of ’b’s.

‘+’ Causes the resulting REGEXP to match 1 or more repetitions of the preceding
REGEXP. "ab+" will match ’a’ followed by any non-zero number of ’b’s; it will
not match just ’a’.

‘?’ Causes the resulting REGEXP to match 0 or 1 repetitions of the preceding REG-
EXP. "ab?" will match either ’a’ or ’ab’.

‘*?’, ‘+?’, ‘??’ The ‘*’, ‘+’, and ‘?’ qualifiers are all ”greedy”; they match as much
text as possible. Sometimes this behaviour isn’t desired; if the REGEXP "<.*>" is
matched against ‘<H1>title</H1>’, it will match the entire string, and not just
‘<H1>’. Adding ‘?’ after the qualifier makes it perform the match in ”non-greedy”
or ”minimal” fashion; as few characters as possible will be matched. Using ".*?"
in the previous expression will match only ‘<H1>’.

‘\’ Either escapes special characters (permitting you to match characters like ‘*’, ‘?’,
and so forth), or signals a special sequence; special sequences are discussed below.
If you are not using a command-line file (see section 6.2), remember that most
shells also use the backslash as an escape sequence in the command line; therefore
you have to put the regular expression into ’-quotes to prevent an interpretation
by the shell.

‘[]’ Used to indicate a set of characters. Characters can be listed individually, or a
range of characters can be indicated by giving two characters and separating them
by a ‘-’. Special characters are not active inside sets. For example, "[!akm]"
will match any of the characters ‘a’, ‘k’, ‘m’, or ‘!’; "[a-z]" will match any
lowercase letter, and ‘[a-zA-Z0-9]’ matches any letter or digit. Character classes
such as ‘\w’ or ‘\S’ (defined below) are also acceptable inside a range. If you
want to include a ‘]’ or a ‘-’ inside a set, precede it with a backslash, or place it
as the first character. The pattern "[]]" will match ‘]’, for example.
You can match the characters not within a range by ”complementing” the set. This
is indicated by including a ‘^’ as the first character of the set; ‘^’ elsewhere will
simply match the ‘^’ character. For example, "[^5]" will match any character
except ‘5’.

‘|’ ‘A|B’, where A and B can be arbitrary REGEXPs, creates a regular expression that
will match either A or B. This can be used inside groups (see below) as well. To
match a literal ‘|’, use "\|", or enclose it inside a character class, as in "[|]".

42 Sec. 7: The Current Tools

‘(...)’ Matches whatever regular expression is inside the parentheses, and indicates
the start and end of a group. To match the literals ‘(’ or ‘)’, use "\(" or "\)",
or enclose them inside a character class: "[(] [)]".

‘(?...)’ This is an extension notation (a ‘?’ following a ‘(’ is not meaningful oth-
erwise). The first character after the ‘?’ determines what the meaning and fur-
ther syntax of the construct is. Extensions usually do not create a new group;
"(?P<NAME>...)" is the only exception to this rule. Following are the some of the
currently supported extensions.

‘(?P<NAME>...)’ Similar to regular parentheses, but the substring matched by the
group is accessible via the symbolic group name NAME.

‘(?P=NAME)’ Matches whatever text was matched by the earlier group named NAME.

‘(?=...)’ Matches if "..." matches next, but doesn’t consume any of the string. This
is called a lookahead assertion. For example, "Isaac (?=Asimov)" will match
‘Isaac ’ only if it’s followed by ‘Asimov’.

‘(?!...)’ Matches if "..." doesn’t match next. This is a negative lookahead assertion.
For example, "Isaac (?!Asimov)" will match ‘Isaac ’ only if it’s not followed
by ‘Asimov’.

The special sequences consist of ‘\’ and a character from the list below. If the ordinary
character is not on the list, then the resulting REGEXP will match the second character.
For example, "\$" matches the character ‘$’.

‘\A’ Matches only at the start of the string.

‘\b’ Matches the empty string, but only at the beginning or end of a word. A word is
defined as a sequence of alphanumeric characters, so the end of a word is indicated
by whitespace or a non-alphanumeric character.

‘\B’ Matches the empty string, but only when it is not at the beginning or end of a
word.

‘\d’ Matches any decimal digit; this is equivalent to the set "[0-9]".

‘\D’ Matches any non-digit character; this is equivalent to the set "[^0-9]".

‘\s’ Matches any whitespace character; this is equivalent to the set "[\t\n\r\f\v]".

‘\S’ Matches any non-whitespace character; equivalent to the set "[^ \t\n\r\f\v]".

‘\w’ This is equivalent to the set "[a-zA-Z0-9_]", the alphanumeric characters.

‘\W’ This is equivalent to the set "[^a-zA-Z0-9_]", the non-alphanumeric characters.

‘\Z’ Matches only at the end of the string.

‘\\’ Matches a literal backslash.

Result:

A sus file containing data from the text.

Examples:

See Section 5.2.

Sec. 7: The Current Tools 43

7.8 table2sus

Purpose:

Part of the Sus Filter Tools : Converts a (Gnuplot-)ASCII table to sus format.

Usage:

table2sus [<option> ...] [<label> ...]

If no <label>s are given, they are searched in the ASCII table. The number of columns
is deduced from the number of space-separated words in the last un-commented line in
the file. The first line with this number of words that could be labels (alphanumeric
words beginning with a letter) is considered to contain the labels. If labels are not found
in this way, "col1","col2"... are used. By default, the command acts as a filter (reads
from stdin and writes to stdout).

Options:

-i, --input=<FILENAME> read from <FILENAME> (default: ’-’ for stdin)

-o, --output=<FILENAME> write to <FILENAME> (default: ’-’ for stdout)

-s, --separator=<SEPARATOR> use <SEPARATOR> as separator (default: ’ ’)

-b, --binary store sus file in binary format (default: plain ascii format)

-h, --help prints this help

--nolabrc do not read ~/.labrc and ./labrc

With @FILE or @ FILE (some) command-line options are read from FILE (see section
6.2).

Result:

A sus file containing data from the ASCII table.

Examples:

See Section 5.2.

44 Sec. 7: The Current Tools

7.9 sus2text

Purpose:

Part of the Sus Filter Tools : Converts sus file to a space delimited ASCII table.

Usage:

sus2text [<option> ...] [<label> | <label>=<expression> ...]

If <label>s are given, only those <label>s will be processed. Otherwise all labels will
be taken. By default, the command acts as a filter (reads from stdin and writes to
stdout).

Options:

-f, --filter=<EXPRESSION> just output records where <EXPRESSION> is nonzero

-s, --sort=<EXPRESSION> sort records according to <EXPRESSION> (by default, take
the average if there are records with the same numeric value for <EXPRESSION>;
string values are always concatenated). Use float(<EXPRESSION>) to sort accord-
ing to a numeric expression. Multiple --sort switches are possible.

-a, --add=<LABEL=EXPRESSION> add a new field in each record with label <LABEL>

-c, --combine=[min|max|average|mean|sum|prod|no] how to merge multiple entries
of the same label from different records with the same --sort <EXPRESSION>

-e, --eval=[strict,warn,debug,invalid] see section 5.1 for details

-i, --input=<SUSFILENAME> read <SUSFILENAME> (default: ’-’ for stdin) Multiple in-
put files are possible. The files are merged by effectively catenating them one after
another. See Section 5.2.3)

-o, --output=<FILENAME> write to <FILENAME> (default: ’-’ for stdout)

--nolabrc do not read ~/.labrc and ./labrc

--help-expression print help for expressions (see section 5.1)

The switches --add, --sort, and --filter are processed in the same order as in the
command line.

With @FILE or @ FILE (some) command-line options are read from FILE (see section
6.2).

Result:

A space-separated ASCII table.

Examples:

See Section 5.2.

Sec. 7: The Current Tools 45

7.10 sus2latex

Purpose:

Part of the Sus Filter Tools : Converts sus file to a LATEX table.

Usage:

sus2latex [<option> ...] [<label> | <label>=<expression> ...]

If <label>s are given, only those <label>s will be processed. Otherwise all labels will
be taken. By default, the command acts as a filter (reads from stdin and writes to
stdout).

Options:

-f, --filter=<EXPRESSION> just output records where <EXPRESSION> is nonzero

-s, --sort=<EXPRESSION> sort records according to <EXPRESSION> (by default, take
the average of numeric values if there are records with the same value for
<EXPRESSION>; string values are always concatenated). Use float(<EXPRESSION>)
to sort according to a numeric expression. Multiple --sort switches are possible.

-a, --add=<LABEL=EXPRESSION> add a new field in each record with label <LABEL>

-c, --combine=[min|max|average|mean|sum|prod|no] how to merge multiple entries
of the same label from different records with the same --sort <EXPRESSION>

-e, --eval=[strict,warn,debug,invalid] see section 5.1 for details

-i, --input=<SUSFILENAME> read <SUSFILENAME> (default: ’-’ for stdin) Multiple in-
put files are possible. The files are merged by effectively catenating them one after
another. See Section 5.2.3)

-o, --output=<FILENAME> write to <FILENAME> (default: ’-’ for stdout)

--nolabrc do not read ~/.labrc and ./labrc

--help-expression print help for expressions (see section 5.1)

The switches --add, --sort, and --filter are processed in the same order as in the
command line.

With @FILE or @ FILE (some) command-line options are read from FILE (see section
6.2).

Result:

The body of a LATEX table (tabular-environment), with a simple header and footer in
comment lines (see Section 5.2.9 for an example).

Examples:

See Section 5.2.

46 Sec. 7: The Current Tools

7.11 sus2plot

Purpose:

Part of the Sus Filter Tools : Passes a sus file to Gnuplot.

Usage:

sus2plot [<option> ...] [<label> | <label>=<expression> ...]

If <label>s are given, only those <label>s will be processed. Otherwise all labels will
be taken. By default, the command acts as a filter (reads stdin and prints stdout).

Options:

-f, --filter=<EXPRESSION> just output records that match the filter

-s, --sort=<EXPRESSION> sort records according to <EXPRESSION> (by default, take
the average of numeric values if there are records with the same value for
<EXPRESSION>; string values are always concatenated). In the plot, this also defines
the x axis. Use float(<EXPRESSION>) to sort acording to a numeric expression.
Multiple --sort switches are possible.

-a, --add=<LABEL=EXPRESSION> add a new field in each record with label <LABEL>

-c, --combine=[min|max|average|mean|sum|prod|no] how to merge multiple entries
of the same label from different records with the same --sort <EXPRESSION>

-e, --eval=<[strict,warn,debug,invalid]> see --help-expression for details

-p, --plotcommand=<COMMAND> insert some gnuplot commands before plotting

-i, --input=<SUSFILENAME> read <SUSFILENAME> (default: ’-’ for stdin) Multiple in-
put files are possible. The files are merged by effectively catenating them one after
another. See Section 5.2.3)

-o, --output=<FILENAME> instead of displaying the plot, store it as <FILENAME> in one
of the following formats: postscipt, eps, png or pbm (depending on the suffix of
<FILENAME>).

--nolabrc do not read ~/.labrc and ./labrc

--help-expression print help for expressions (see section 5.1)

The switches --add, --sort, and --filter are processed in the same order as in the
command line.

With @FILE or @ FILE (some) command-line options are read from FILE (see section
6.2).

Result:

Either a plot (in which you can navigate and zoom), or file with the plot.

Figure 1: sus2plot Navigation Buttons

Sec. 7: The Current Tools 47

Examples:

See Section 5.2.

48 Sec. 7: The Current Tools

7.12 sus2sus

Purpose:

Part of the Sus Filter Tools : Reformats a sus file.

Usage:

sus2sus [<option> ...] [<label> | <label>=<expression> ...]

If <label>s are given, only those <label>s will be processed. Otherwise all labels will
be taken. By default, the command acts as a filter (reads from stdin and writes to
stdout).

Options:

-f, --filter=<EXPRESSION> just output records where EXPRESSION is nonzero

-s, --sort=<EXPRESSION> sort records according to <EXPRESSION> (by default, take
the average of numeric values if there are records with the same value for
<EXPRESSION>; string values are always concatenated). Use float(<EXPRESSION>)
to sort according to a numeric expression. Multiple --sort switches are possible.

-a, --add=<LABEL=EXPRESSION> add a new field in each record with label <LABEL>

-c, --combine=[min|max|average|mean|sum|prod|no] how to merge multiple entries
of the same label from different records with the same --sort <EXPRESSION>

-e, --eval=<[strict,warn,debug,invalid]> see section 5.1 for details

-i, --input=<SUSFILENAME> read <SUSFILENAME> (default: ’-’ for stdin) Multiple in-
put files are possible. The files are merged by effectively catenating them one after
another. See Section 5.2.3)

-o, --output=<FILENAME> write to <FILENAME> (default: ’-’ for stdout)

-b, --binary store sus file in binary format (default: plain ascii format)

--nolabrc do not read ~/.labrc and ./labrc

--help-expression prints help for expressions (see section 5.1)

The switches --add, --sort, and --filter are processed in the same order as in the
command line.

With @FILE or @ FILE (some) command-line options are read from FILE (see section
6.2).

Result:

A sus file.

Examples:

See Section 5.2.

Sec. A: System Environment Commands 49

8 Downloading and Contact Information

The latest release of the tool set is available for downloading from
http://explab.sourceforge.net

Here you can also report bugs or make requests for new features and learn about work in
progress. We gladly accept constructive feedback, bug fixes, and improvements.

A System Environment Commands

In this appendix we list some commands that report information that may be relevant for
your experiment. We use here the syntax for the --comment option of labrun. If you have
other commands you believe others may find useful, please let us know so we can add them
to this list.

Cache Information

IRIX:
Instruction cache=‘hinv‘:Instruction.cache.size[\s:]+(.*)
L1 data cache=‘hinv‘:Data.cache.size[\s:]+(.*)

Solaris:
Instruction cache=0x‘prtconf -pv‘:icache-size Bytes
L1 data cache=0x‘prtconf -pv‘:dcache-size Bytes

The information from prtconf is in hex. The 0x before the command indicates
that labrun should convert the number of bytes reported to decimal.

CGAL version

CGAL version=@$CGALROOT/include/CGAL/config.h:CGAL_VERSION\s+(.*)

Compiler version

Compiler version=‘$CC -v‘: version

Graphics card (IRIX)

Graphics card=‘hinv‘:Graphics\sboard

LEDA version

not using CGAL
LEDA version=@$LEDAROOT/CHANGES:__LEDA__

using CGAL
LEDA version=‘cgal_leda_version‘

Because CGAL may have been installed with a different version of LEDA than
the one pointed to by LEDAROOT, the script cgal leda version is used to find the
correct version number. The script is as follows:

#! /bin/sh -f

cat $CGAL_MAKEFILE |grep "/LEDA.*/incl"|sed -e s:incl:CHANGES: > /tmp/name
if [-s /tmp/name] ; then
file=‘cat /tmp/name‘

http://explab.sourceforge.net

50 Sec. A: System Environment Commands

cat $file|grep "#define __LEDA__"|head -n 1|sed ’s:#define __LEDA__::’
rm /tmp/name

else
echo "None"

fi

Notice that this script assumes the environment variable CGAL MAKEFILE has been
set. If this makefile does not correspond to one created with LEDA support, the
value ”None” is returned.

Qt version

Qt version=@$QTDIR/README:version\s+(\d+(\.\d+)*)

We also show here the commands used to extract the information automatically recorded
in the log file in case these commands somehow correspond to different information on your
system.

OS

OS=‘uname -s‘

Hardware

Hardware=‘uname -m‘

Machine

Machine=‘uname -n‘

Processor

IRIX: Processor=‘hinv | grep ’.* MHZ .* Processor’ |
awk ’{printf \"%d MHz %s\", $2,$4}’‘

This command should be on a single line.

Linux: Processor=@/proc/cpuinfo:cpu.MHz[:\s]+(\w)+ MHz
@/proc/cpuinfo:model.name[\s:]+(.*)

This command should be on a single line.

Solaris: Processor=‘psrinfo -v | sed -n -e ’1,4 s/.*The \(.*\)
processor operates at \(.*\),/\2 \1/p’‘

This command should be on a single line.

Memory size

IRIX: Memory size=‘hinv‘:Main.memory.size[\s:]+(.*)

Linux: Memory size=@/proc/meminfo:MemTotal[\s:]+(.*)

Solaris: Memory size=‘prtconf -pv‘:Memory.size[\s:]+(.*)

L2 data cache

IRIX: L2 data cache=‘hinv‘:Secondary.*cache.size[\s:]+(.*)

Linux: L2 data cache=@/proc/cpuinfo:cache.size[\s:]+(.*)

Solaris: L2 data cache=0x‘prtconf -pv‘:ecache-size Bytes

Sec. A: REFERENCES 51

References

[Joh96] D. Johnson. A theoretician’s guide to the experimental analysis of algorithms.
http://www.research.att.com/~dsj/papers/exper.ps, 1996.

[MM99] Catherine C. McGeoch and Bernad M. E. Moret. How to present a paper on
experimental work with algorithms. SIGACT News, 30(4):85–90, December 1999.

[MPG00] Max-Planck-Gesellschaft. Regeln zur sicherung guter wissenschaftlicher Praxis (in
German). http://www.mpg.de/pri00/pri0075.htm, December 2000.

http://www.research.att.com/~dsj/papers/exper.ps
http://www.mpg.de/pri00/pri0075.htm

Index

~/.labrc, 20

cache size
instruction, 49
L1, 49

CGAL version, 49
command input file, 21
command line file

example, 17
command-line options

--Make, 34
--add, 12, 44–48

example, 16, 18
--autocvs, 29
--batch, 29, 32, 36
--binary, 25, 40, 43, 48
--check, 8, 36
--clean, 34
--combine, 44–48

example, 17
--comment, 29, 32
--cvs, 29
--date, 29
--direct, 36
--env, 29, 32
--eval, 13, 44–48
--exec, 29, 32, 34
--filter, 12, 44–48

example, 16
--for, 7, 36
--hosts, 8, 36
--ignore, 10, 32, 36
--info, 29
--input, 40–48
--keep, 10, 29, 32, 34, 36
--labrunflag, 36
--log, 29, 32, 34, 36
--macro, 36
--makeflag, 34
--maxtasks, 8, 36
--name, 29, 32, 36
--nesting, 7, 36
--next, 40
--nocvs, 10, 29, 32
--nolabrc, 20, 29–48
--nolabrun, 36
--noskip, 36
--one, 29, 32

--output, 40–48
--plotcommand, 46
--print, 7, 32, 36
--sort, 12, 44–48

example, 16, 17
--tag, 29, 32
--target, 34
@, 21
style, 27

compiler version, 49
configuration files

creating, 4, 28
format, 20

current.clog, 6
current.err, 9
current.log, 9
current.out, 9

debugging sus file transformations, 13
defining labels, 40

expressions, 12
example, 12, 16
format, 13
iff, 12
savediv, 13

goals, 3
graphics card, 49

hardware, 50

labmex, 6, 34
labrc, 20
labrerun, 10, 32
labrun, 9, 29
labschedule, 7, 36
labsetup, 28
LEDA version, 49
log file format

labrun, 23
labschedule, 24

loops, 7

machine, 50
machine cluster, 8
memory size, 50
multiple experiments, 8
multiple machines, 8

52

Sec. A: INDEX 53

multiple runs, 6

operating system, 50

processor, 50
python

expressions, see expression
regular expressions, see regular expres-

sions

Qt version, 50
quoting, 21, 27

random numbers, 39
regular expressions

definition, 40–42
example, 15

setup, 4
special characters, 21, 27
sus file format, 25
sus2latex, 45

example, 19
sus2plot, 46

example, 19
sus2sus, 48

example, 18
sus2text, 44

example, 16

table2sus, 43
example, 14, 18

text2sus, 40
example, 15, 17

	Contents
	Introduction
	Goals
	Supported Platforms
	Supported Experiments

	Setting up an Experiment
	Recording the Experiment's Context
	Specifying the Executable and Its Parameter Sets
	The labmex Tool
	Multiple Data Sets, Compilations, or Machines
	The labschedule Tool

	Running an Experiment
	Rerunning an Experiment
	Analyzing the Output
	The Sus Filter Tools
	Examples
	table2sus
	text2sus
	merging files and adding fields
	filtering
	command option file
	sorting and combining values in different ways
	adding fields with formatting
	sus2plot
	sus2latex

	File Formats
	labrc Files
	Command Input Files
	.log Files
	labrun
	labschedule

	sus Files

	The Current Tools
	Command-line Options
	labsetup
	labrun
	labrerun
	labmex
	labschedule
	text2sus
	table2sus
	sus2text
	sus2latex
	sus2plot
	sus2sus

	Downloading and Contact Information
	System Environment Commands
	Bibliography
	Index

